Datacard

Datacard® SD, CD, and CE Series Card Printers
Windows Driver Software Development Kit

Programmer’s Reference Guide

October 2015

Part No. 527250-001, Rev. G

Notice

Please do not attempt to operate or repair this equipment without adequate training.
Any use, operation or repair you perform that is not in accordance with the information
contained in this documentation is at your own risk.

Trademark Acknowledgments

Datacard is a registered trademark and service mark of Entrust Datacard Corporation in
the United States and other countries.

MasterCard is a registered trademark of MasterCard International Incorporated.
Visa is a registered trademark of Visa International Service Association.

All other product names are the property of their respective owners.
Proprietary Notice

The design and information contained in these materials are protected by US and
international copyright laws.

All drawings and information herein are the property of Entrust Datacard Corporation. All
unauthorized use and reproduction is prohibited.

Entrust Datacard

1187 Park Place

Shakopee, MN 55379
Phone: 952-933-1223

Fax: 952-933-7971
www.entrustdatacard.com

Copyright © 2012-2015 Entrust Datacard Corporation. All rights
reserved.

http://www.datacard.com

Compliance Statements

Liability

The WARNING and CAUTION labels have been placed on the equipment for your safety. Please do
not attempt to operate or repair this equipment without adequate training. Any use, operation,
or repair in contravention of this document is at your own risk.

Safety

All Datacard® products are built to strict safety specifications in accordance with CSA/UL60950-1
requirements and the Low Voltage Directive 2006/95/EC.

Therefore, safety issues pertaining to operation and repair of Datacard® equipment are primarily
environmental and human interface.

The following basic safety tips are given to ensure safe installation, operation, and maintenance
of Datacard equipment.

Connect equipment to a grounded power source. Do not defeat or bypass the ground lead.

Place the equipment on a stable surface (table) and ensure floors in the work area are dry and
non-slip.

Know the location of equipment branch circuit interrupters or circuit breakers and how to turn
them on and off in case of emergency.

Know the location of fire extinguishers and how to use them. ABC type extinguishers may be
used on electrical fires.

Know local procedures for first aid and emergency assistance at the customer facility.
Use adequate lighting at the equipment location.

Maintain the recommended temperature and humidity range in the equipment area.

Regulatory Compliance
Notice for USA (FCC notice)

This equipment has been tested and found to comply with the limits for Class A computing
devices, pursuant to Part 15 of FCC rules. These limits are designed to provide reasonable
protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy. If this
equipment is not installed and used in accordance with this instruction manual, it may cause
harmful interference to radio communications. Operation of this equipment in a residential area
is likely to cause harmful interference in which case the user will be required to correct the
interference at their own expense. Changes or modifications not expressly approved by the party
responsible for compliance could void the user's authority to operate the equipment.

Notice for Canada
Industry Canada

This digital apparatus does not exceed the Class A limits for radio noise for digital apparatus set
out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites
applicables aux appareils numériques de la classe A prescrites dans le Reglement sur le brouillage
radioélectrique édicté par le ministere des Communications du Canada.

RSS-Gen, Issue 3, December 2010, Section 7.1.3 User Manual Notice

This Device complies with Industry Canada License-exempt RSS standard(s). Operation is subject
to the following two conditions: 1) this device may not cause interference, and 2) this device
must accept any interference, including interference that may cause undesired operation of the
device.

Cet appareil est conforme avec Industrie Canada RSS standard exemptes de licence(s). Son
fonctionnement est soumis aux deux conditions suivantes: 1) ce dispositif ne peut causer des
interférences, et 2) cet appareil doit accepter toute interférence, y compris les interférences qui
peuvent causer un mauvais fonctionnement du dispositif.

Notice for Europe
The EU Declaration of Conformity can be found on Datacard.com

We hereby certify that this printer complies with EMC Directive 2004/108/EC, R&TTE Directive
1999/5/EC, and the EU RoHS Directive EU Directive 2011/65/EC. This printer conforms to Class A of
EN 55022 and to EN 301 489-5. Operation of this equipment in a residential environment may
possibly cause interference. In the event of interference, the users, at their own expense, will be
required to take whatever measures are necessary to correct the problem.

Notice for Europe and Australia

This is a Class A product. In a domestic environment this product may cause radio interference, in
which case the user may be required to take adequate measures.

Notice for China (Simplified Chinese)

Sy
s

BB A R > ARSI
G Al RE R AP A TR
FEXFESLT > AIRERR A
N FPER AU S Al THOFEHE -

Notice for Taiwan (Traditional Chinese)

THERE
B HEREE MR, EEER
RIS T A, A5 g s a4
TH, FEMERLT, EHEE
WERFKH FLE E R E.

Notice for Japan

Japanese Voluntary Control Council for Interference (VCCI) class A statement

CDEEIL. 75X A ERENEETYT, CORBERERE TERTS
BRINEZRERECTIENDHYET, COBLECIERENET LR
ERTHALOBERENBAIEDHVET, VCCI-A

Korea Communications Commission (KCC) statement

0l 717 HREAS)2E & HIHEEI|IIZ
N ZOHAH £= MEX= 0] = F206tAI)
Bietod, JtE 2(2] XIF0A MEot=s ZXE =
Moz &LICH

California Proposition 65 Compliance

WARNING: This product contains chemicals, including lead, known to the State of California to
cause cancer, and birth defects or other reproductive harm. Wash hands after handling.

Datacard Group believes that its products are not harmful when used as designed. However, the
above warning is made in compliance with the State of California Safe Drinking Water and Toxic
Enforcement Act of 1986, which requires warning labels on products that may contain elements
that the State of California considers harmful.

Revision Log

Windows Driver Software Development Kit
Programmer’s Reference Guide

Revision Date Description of Changes

A May 2012 First release of this document

B November 2012 Updates for XPS Card Printer Driver 4.0
C April 2013 Updates for XPS Card Printer Driver 4.1
D March 2014 Updates for XPS Card Printer Driver 5.0
E January 2015 Updates for XPS Card Printer Driver 6.0
F May 2015 Updates for XPS Card Printer Driver 6.1
G October 2015 Updates for XPS Card Printer Driver 6.2

Contents

Chapter 1: INtrodUCTION. 1
INStallation 3
Chapter 2: SDK Sample Code 5
Sample Code 5
SamplesIncluded inthe SDK 5
Print Sample (NotInteractive) i e e e 6
Magnetic Stripe Sample. 6

Smart Card Sample. 6
Single-Wire Smart Card Sample i e e 7
Single-Wire MIFARE Classic SmartCard Sample 7
Lamination Sample. 7

Read and Verify Laminator Serialized Overlay Sample 8
Emboss and Indent Sample. 8

Print Locking Sample. 8

Printer Control Sample e e 8

Status Sample 8
Sample Code LoCationt e 9
Developer ENVIrONMENTS ot e 10
PIINtING . . oo 11
TeXt PHINtING. . . oo 11
Raster GraphiCs Printing e e 12
Vector Graphics Printing. 13
Topcoat and Print Blocking 13
Controlling Card Printing Preferences. i i 14
Sample Code that Demonstrates Printing i e 14
View Print SEparations.t 15
Getthe Statusof a PrintJOb e 15
EMDOSSING . . o 16
Embossing Sample Code 16
Laminating. 17
Laminator Bar Code Read 17
Laminating Sample Code 17
Chapter 3: Interactive Mode Using the IBidiSpl Interface 19
OV IV W . . oot e e e 19
BIdISPl REQUESES oot e 20
Java Helper DLL Interface 22
Order and Timing of Interactive Job Operations. 23
Determine the Success of an IBidiSpl Request. i 23
Start and End an Interactive Job. 24

SaMPIE COde. . . 26

Get the Status of an Interactive Job 27

Sample Code 28
Interactive Mode Error RECOVEIYo e 29
Error-Related Values in the Printer Status Structure 29
Recovery from Errors 30
Basic Error Recovery (Recommended) ... e 30
Advanced Ermor RECOVEIY it e e 30
Cancel AllJobS 31

Errors Cleared atthe Printer 31
Suppress the Driver Message Display oo 31
Encode a Magnetic Stripe with Data. 32
Interactive Mode Magnetic Stripe Encoding.t 32
Magnetic Stripe Track Data Format. 34
Sample Code—Magnetic Stripe Encode 34
Read Data From a Magnetic Stripe. 35
Sample Code—Magnetic Stripe Read 36
Read Data from a Serialized Laminate BarCode 37
Sample Code—Serialized Laminate BarCodeRead 37
Place a Card inthe Smart Card Station 38
Sample Code—Smart Card Park. 39
Personalize aSmart Cardttt e e 39
Printer.SmartCardUnit:SingleWire:Connect. 39
Smart Card Connect Request—Required Information......................... 40

Smart Card Connect Request—ReturnValues 40

Smart Card Connect Request—StatusReturned 41
Printer.SmartCardUnit:SingleWire:Disconnect. 41
Smart Card Disconnect Request—Required Information. 41

Smart Card Disconnect Request—ReturnValues 42

Smart Card Disconnect Request—Status Returned 42
Printer.SmartCardUnit:SingleWire:Transmit 42
Smart Card Transmit Request—Required Information. 43

Smart Card Transmit Request—Return Values 43

Smart Card Transmit Request—Status Returned 43
Printer.SmartCardUnit:SingleWire:Status i, 44
Smart Card Status Request—Return Values. 44

Smart Card Status Request—StatusReturned, 44
Printer.SmartCardUnit:SingleWire:GetAttrib 45
Smart Card GetAttrib Request—Required Information 45

Smart Card GetAttrib Request—Return Values. 45

Smart Card GetAttrib Request—StatusReturned 46
Sample Code—Single-Wire Smart Card Personalization. 46
Read and Write Data to MIFARE Classic over Single-Wire, 47
Sample Code—Single-Wire MIFARE Classic Smart Card Personalization a7
Return Values from the Sample Code SCard Wrapper. 47

Application Responsibilities with Single-Wire SmartCard. 47

Installed Printer Status, Printer Options, and Supplies Status. 48

Printer StatUS. 49
Message NUMD BT e e e e e 49

Printer Connection Information. 50

Printer OpPtioNS e 50
Sample Code—Printer Status. i e 52
Supplies Information 53
Sample Code—Supplies Status e 55

Card COUNES. . . oot e 55
GetCard COUNTS. e 55

Status XML File for Single Input Hopper Printer. 55

Status XML for Six-Position Input HopperPrinter., 56

Reset Card CoUNTS e e 57

Sample Code—Card COUNTS.ttt e e e 57
LOCKING . e e 58

Lock orUnlock the Printer. e 58

Change the Lock/Unlock Password e 58

Password RUIES 59

Determine the Success of alockRequest 59

Sample Code—LoCKiNg 59

REStAIt PrIN el o e e 60
Sample Code—Restart Printer 60
Interactive Mode Best PraCtiCes e 60
Appendix A: Error Description Strings oo A-1
Appendix B: Print to a File with the XPS Card Printer Driver B-1
Appendix C: Using the Java SDK Sample Code with Eclipse C-1
Appendix D: Suppressing the Driver Message Display D-1
Enabling Driver Silent Mode. e D-1
Silent Mode Operation NOtES D-2
AppendiX E: ReferencCes E-1

Vii

Viii

Chapter 1: Introduction

The Application Programming Interface (API) built into the XPS Card Printer Windows driver
(referred to as “the driver” in the remainder of this Guide) provides two methods that your
application can use to control card personalization operations through the driver. Both use built-
in Windows operating system interfaces.

e Use the driver Print Ticket. Print Ticket is a required feature of any driver using the XML Paper
Specification (XPS) print driver architecture. A Print Ticket tells the printer how to process a
print job. Through Print Ticket, your application can override the driver’s printing preferences
on a job-by-job basis.

e Use the Windows IBidiSpl interface. The IBidiSpl interface is the Microsoft preferred API for
printer control. Using the IBidiSpl interface, your application places the driver in “interactive
mode,” where the application has fine-grained job control and can access data on the card
during the card personalization process.

o Java does not directly support the IBidiSpl interface. Datacard has created a C++
helper DLL that your Java application uses as the interface for interactive printer
control. The helper DLL is included with the Software Development Kit (SDK).

The XPS Card Printer Windows Driver SDK (referred to as “the SDK”) includes documentation and
sample code that describe and demonstrate how to use both Print Ticket and the IBidiSpl
interface.

To learn more about Print Ticket and the IBidiSpl interface, refer to Appendix E:
"References”.

SDK Programmer’s Reference Manual 1

The interfaces documented in the SDK provide the following capabilities to your application using
the driver:

e Print while modifying printing characteristics using the Print Ticket:
m Print one- or two-sided
m Disable printing on one or both card sides
m Specify the copy count
m Printin portrait or landscape orientation
m Rotate a card side by 180 degrees
m Select from the predefined topcoat and print blocking
m Specify the input hopper used to select the card

e Use escaped text in the card data to set topcoat blocking rectangles, and set print blocking
rectangles

e Use escaped text in the card data to encode standard format magnetic stripe data
e Use escaped text in the card data to specify the input hopper used to select the card

e Use escaped text in the card data to emboss, indent, and top a card when printing to a CE
Series printer

e Read magnetic stripe data

e Encode custom magnetic stripe data

e Stage a smart card so it can be personalized

e Stage and personalize a smart card using the single-wire smart card interface
e Read and write data to a MIFARE Classic chip smart card

e Laminate, debow, and impress a card

e Process more than one job at a time

e Read the bar code on a serialized overlay

e Check whether the driver or printer is busy and wait before starting a job
e Monitor supplies and printer status

e Get printer and driver error messages

e Recover from printer and driver errors

Introduction

e Get job status for the current interactive mode job

e Check printer supplies status before printing the card

e Get a count of cards processed by the printer

e Reset the resettable card count values stored in the printer

e Restart the printer

The SDK supports the same Microsoft Windows operating systems as the driver.

Installation

For most situations, there are no SDK components to install with your application. You need
version 6.2 of the XPS Card Printer Driver and a Datacard SD, CD, or CE Series card printer. A C++
helper DLL is included for Java applications because they cannot interface directly to the IBidiSpl
COM interface.

SDK Programmer’s Reference Manual 3

Introduction

Chapter 2: SDK Sample Code

The SDK includes sample code that demonstrates the details you need to
successfully use the driver API in your application.

Sample Code

The SDK sample code demonstrates specific card personalization tasks using best practices for
Print Ticket usage, job sequencing, and basic error handling. All the samples are console
applications to make it easier to integrate the code into your application. Samples are provided in
C++, C#, VB.NET, and Java. The C++, C#, and VB.NET samples use direct calls to the IBidiSpl
interface. The Java samples use calls to the helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Samples Included in the SDK

The SDK includes eleven samples:

Sample Function Code Sample
Print print
Magnetic Stripe magstripe
Smart Card smartcard

Single-Wire Smart Card

smartcard_singlewire

Single-Wire MIFARE Classic Smart Card

smartcard_singlewire_mifare*

Lamination

lamination*

Laminator Serialized Overlay

lamination_barcode_read*

Emboss and Indent

emboss_indent*

Print Locking

locks*

Printer Control

printer_control*

Status

status

* Not available in Java

SDK Programmer’s Reference Manual

Print Sample (Not Interactive)
Use the Print sample to demonstrate the print functionality of the printer and driver.

The Print sample uses the Print Ticket to override the driver preferences for:

e One- or two-sided printing

e Copy count

e Per card-side portrait or landscape orientation (Java is limited to card level orientation)
e Input hopper used to select the card

e Predefined topcoat and print blocking patterns *

e Per card-side 180-degree rotation *

e Per card-side disabling of printing *

* Java does not support these features.

The Print sample also demonstrates:

e Color graphics printing

e K (black) text and K graphics printing

e Custom topcoat and print blocking using escapes

e Standard IAT-format magnetic stripe encoding using escapes

e Input hopper used to select the card using escapes

e Ability to check printer supplies status before printing the card
e Ability to poll for job status and error conditions

Magnetic Stripe Sample

The Magnetic Stripe sample demonstrates magnetic stripe encoding, with options to read the
magnetic stripe data, print text on the front of the card, check supplies, and poll for job
completion status and error conditions. The print and magnetic stripe data is part of the sample
and cannot be changed.

Smart Card Sample

The Smart Card sample demonstrates parking a card in the printer smart card reader, moving the
card from the reader, and includes options to specify whether the smart card chip is on the back
of the card, print on the front of the card, check supplies, and poll for job completion status and
error conditions. The print data is part of the sample and cannot be changed.

6 SDK Sample Code

Single-Wire Smart Card Sample

The printer must be equipped with a single-wire smart card option for this sample
to function correctly.

The Single-Wire Smart Card sample uses the integrated smart card reader that communicates
with the personalization application using the same cable the driver uses to communicate with
the printer. It demonstrates parking a card in the printer smart card reader, moving the card from
the reader, and includes options to specify whether the smart card chip is on the back of the card,
print on the front of the card, check supplies, and poll for job completion status and error
conditions. The print data is part of the sample and cannot be changed.

Single-Wire MIFARE Classic Smart Card Sample

The printer must be equipped with the single-wire smart card option. You must
use the proper smart cards for this sample to function correctly.

This sample demonstrates smart card operations including reading and writing to the chip for a
MIFARE Classic smart card. It uses the single-wire smart card tunnel and Duali reader commands
for a MIFARE Classic application. The sample moves the card into and out of the smart card
reader, and includes options to specify whether the smart card chip is on the back of the card,
print on the front of the card, check supplies, and to poll for job completion status and error
conditions. The print data is part of the sample and cannot be changed.

o This sample is not available in Java.

Lamination Sample

o The printer must be equipped with a laminator for this sample to function.

The Lamination sample demonstrates using Print Ticket to set the lamination options for one or
both lamination stations. It overrides the driver printing preferences settings for those options.
The sample allows you to specify the laminator to use (L1 or L2), and the sides of the card to
laminate. It also includes options to check supplies and poll for job completion status and error
conditions.

o This sample is not available in Java.

SDK Programmer’s Reference Manual 7

Read and Verify Laminator Serialized Overlay Sample

The printer must be equipped with a laminator, a bar code scanner, and serialized
overlay loaded in the L1 laminator cartridge for this sample to function.

This sample demonstrates using the SDK API to retrieve the value of a serialized overlay bar code
from the laminator. It uses the lamination settings specified in the driver, prints a card, and polls
for job completion status and error conditions. It includes a verify option, which allows the
application to control whether the card should continue or be rejected, based on the value
returned. The sample also includes options to specify a wait time to read the bar code data and
to save the bar code read data to a file.

o This sample is not available in Java.

Emboss and Indent Sample

The Emboss and Indent sample demonstrates the use of escapes to emboss, indent, and apply
topping foil to a card using a Datacard CE Series system. The emboss and indent data is part of
the sample and cannot be changed. The sample also checks supplies, and includes options to
specify an input hopper and poll for job completion status and error conditions.

o This sample is not available in Java.

Print Locking Sample

The Print Locking sample demonstrates locking and unlocking the printer using a password for
printers that are equipped with a lock. It also allows you to change the password, or setit to a
blank password. The sample locks the printer when the password is changed.

o This sample is not available in Java.

Printer Control Sample

The Printer Control sample demonstrates a way to cancel all jobs in the printer, reset cards counts
that are resettable, and restart the printer. Using this sample to cancel jobs allows you to return

the printer to a known good state. In addition to canceling jobs active, or queued, in the printer,
any job in an error state in the driver also is canceled.

o This sample is not available in Java.

Status Sample

The Status sample demonstrates using interactive mode to retrieve printer and supplies
information, printer status messages, card counts, job completion status, and error conditions.

8 SDK Sample Code

Sample Code Location

You can find sample source code under the Samples folder. Select the folder that matches the
programming language you are interested in, and then select the folder for the sample containing
the features you want to learn about.

Compiled versions of the samples for Visual C++, Visual C#, and VB.NET are included in the
Samples/Outputs folder. These allow you to demonstrate the sample code without your having to
build the code yourself. Each sample includes help text that describes the parameters you can
enter. To view the help from a command line, navigate to the appropriate folder and enter the
following: sample_name <printername> -h.

The compiled samples have the following runtime dependencies.

e C++: Requires Microsoft Visual C++ 2013 Redistributable Package (x86 and x64). Use the
following link to download the appropriate software package:

http://www.microsoft.com/en-us/download/details.aspx?id=40784

e C# and VB.NET: Require Microsoft .NET v4 Client Framework.

SDK Programmer’s Reference Manual 9

Developer Environments

10

The sample code was developed using the following tools. You are not required to use these, but
their use will guarantee that the sample code builds without issue.

C++, C#, and VB.NET: Microsoft Visual Studio 2013 (You can use any edition, including the
free Express Edition, for C# and VB.NET. Visual C++ requires the Professional edition at a
minimum.)

Java: Eclipse Helios release. Appendix C: "Using the Java SDK Sample Code with Eclipse”
contains step-by-step instructions for importing and building the SDK Java sample code with
Eclipse. In addition the Java helper dll requires that the Microsoft Visual C++ 2013
Redistributable Package be installed. The download link is shown in the previous section.

SDK Sample Code

Printing

Your application can either print or block areas on the card from printing and topcoating using
conventional printing APIs along with escapes. This method is always used, even when a job
includes interactive mode operations for other card personalization tasks or monitoring job
status.

Using Print Ticket, a Microsoft Visual C++, C#, or VB.NET application can override any of the
printing preferences set in the driver's Printing Preferences editor. Java printing does not have
access to the Print Ticket, so Java applications are limited to setting the following: orientation (not
per-side), one or two-sided, and copy count.

The driver separates the print items into separate images expected by the printer (color,
monochrome, UV, and topcoat). The images that are created are based on both of the following:

e The type of print items on the card design

e The type of ribbon installed in the printer

The following sections describe rules for rendering card design elements.
Text Printing

The driver uses the following rules to determine which panels are used to print text:

e If the printer has a color ribbon, any text that is 100% opaque and pure black is rendered by
the monochrome black (K) ribbon panel. Text that is 100% opaque and pure white is
“punched out” of both the color and monochrome panels. In other words, the white text is
created by not printing any color so the white card background shows through. All other text
is rendered using the color (YMC) ribbon panels.

e If the printer has a monochrome ribbon, all non-white text is converted to pure black and
prints the same as pure black text would. Pure white text is punched out of any color
surrounding it.

e If the printer has a ribbon that includes an ultraviolet (UV) fluorescing (F) panel, text that is
100% opaque and is set at RGB(217,217,217) is rendered by the F panel.

SDK Programmer’s Reference Manual 11

Raster Graphics Printing

Raster graphics are images with formats such as bmp, jpeg, png, and tiff.

The driver uses the following rules to determine which panels to use when printing a raster
graphic:

e If the printer has a color ribbon, a raster graphic is rendered by the monochrome (K) ribbon
panel when:

m Itisa2-color (1 bpp) image with black being one of the colors
OR

m Itisa 100% opaque image with only pure black and pure white pixels
OR

m Animage contains any black pixels and the printing preference “Print black image pixels
using monochrome” is enabled. In this case, only the near-black pixels are printed with
the K panel.

All other images are rendered to the color (YMC) panels.

Due to the way JPEG compresses images, it is unlikely that a JPEG image will ever
have only black and white pixels.

e If the printer has a monochrome ribbon, all raster graphics are rendered by the monochrome
(K) ribbon panel. Images that normally would be rendered to the color panels (for example,
photos) are half-toned to preserve the image details.

e If the printer has a ribbon with a UV (F) panel, a raster graphic is rendered by the F panel
when it is a 100% opaque image where one color is RGB(217,217,217) and the other color is
pure white.

12 SDK Sample Code

Vector Graphics Printing

Vector graphics are images with formats, such as WMF. These images are represented by a series
of commands that draw graphic objects to create the complete image. Most vector graphics
elements have an outside border (the stroke) and an inside color (the fill).

The driver uses the following rules to determine which panels are used to print a vector graphic
element:

e If the printer has a color ribbon, a vector graphic is rendered by the monochrome (K) ribbon
panel when:

m There is no Fill and the Stroke is 100% opaque and pure black
OR

m There is no Stroke and the Fill is 100% opaque and pure black
OR

m Both the Fill and Stroke are 100% opaque and pure black

All other elements are rendered to the color (YMC) panels.

e If the printer has a monochrome ribbon, all vector graphic elements are rendered by the
monochrome (K) ribbon panel. Elements that would normally be rendered to the color panels
are half-toned to make them appear as a shade of gray.

e If the printer ribbon includes a UV (F) panel, a vector graphic element is rendered by the
F panel when it is 100% opaque and is set to RGB(217,217,217).

Topcoat and Print Blocking

Your card design may have features that must not be printed on or have topcoat applied over.
Examples include a contact smart card chip, a magnetic stripe, and a signature panel. Using
escapes, you can specify rectangles to block printing, block topcoat, or apply topcoat. Details on
using escapes for blocking printing and topcoat can be found in the “Print Blocking Escapes”
section of the Driver Guide. For more information on non-printing areas, refer to the
“Non-Printing Areas” section of the printer’s Installation and Administrator’s Guide.

SDK Programmer’s Reference Manual 13

Controlling Card Printing Preferences

The Windows printing interface allows job-level application control of:

Card orientation (portrait or landscape)
Two-sided printing

Copy count

Applications written in Microsoft Visual C++, C#, and VB.NET can use the Print Ticket to access
custom preferences created just for the XPS Card Printer Driver. The custom preferences are:

Per side card orientation

Per side 180-degree card image rotation

Per side disable printing flag that ignores the print data in the job
Selection of one of the print and topcoat blocking preset masks.
Input hopper used to select the card

Split-ribbon color printing

Lamination, debow, and impress actions

Sample Code that Demonstrates Printing

14

The SDK includes sample code with language-specific implementation details for printing. The

samples are:
Visual C++, Visual CH, print
and VB.NET
Java javaprint.java
Compiled samples outputs

SDK Sample Code

View Print Separations

The driver can be configured to redirect the images normally sent to the printer to a file on disk.
The output is a zip file which, once extracted, contains a PNG image for color rendering, a PNG
image for monochrome rendering, and a PNG image for topcoat. Using these files simplifies the
task of confirming that graphics are being separated correctly without using printer supplies.
Refer to Appendix B: "Print to a File with the XPS Card Printer Driver” for instructions to configure
the driver to print to a file.

The magnetic stripe track data also is written to the zip file, making it a convenient
way to inspect the data after it is formatted for the printer.

Get the Status of a Print Job

Your application can retrieve the status for the current print job to determine whether the printer
is still actively processing the card.

PrinterJoblID is used to identify the job. The printer job ID is retrieved by calling
Printer.PrintMessages:Read after the print job has been submitted to the printer. Once the printer
job ID is known, the job status can be retrieved using Printer.JobStatus:Read with the PrinterJoblD
of the current job. Refer to “Get the Status of an Interactive Job” on page 27.

SDK Programmer’s Reference Manual 15

Embossing

Your application can emboss, indent, and apply topping foil to a card with the Datacard CE Card
Personalization System by using escapes.

Escapes that control embossing and indenting are designed to work across a wide range of
applications. The escapes rely on special text character sequences to alert the driver that the text
that follows is meant as a command and is not to be printed.

For more information about embosser escapes, including examples and limitations, refer to your
printer’s Driver Guide.

Embossing Sample Code

16

For working code showing embossing, indenting, and topping, refer to the following samples:

Visual C++, Visual CH, emboss_indent
and VB.NET
Java Java does not include an embossing sample at this time.

SDK Sample Code

Laminating

Your application can laminate and impress a card with the Datacard SD460 card printer or a
CD800 printer with the optional CLM laminator. If you plan to use the same lamination settings
for all cards, you simply can set the driver’s printing preferences. However, your application can
override the driver preferences for laminating, either by modifying the job’s Print Ticket or by
including escapes in the text data for the job.

Using the Print Ticket to control lamination is the preferred method because it allows your
application to control laminating more securely than by using escapes. The SDK sample code
demonstrates how to control these operations using the Print Ticket.

Escapes that control lamination and impressing are designed to work across the widest range of
applications. The escapes rely on special text character sequences to alert the driver that the text
that follows is meant as a command and is not to be printed. For more information about
lamination escapes, including examples and limitations, refer to your printer’s Driver Guide.

Laminator Bar Code Read

If your CLM laminator is equipped with a bar code scanner and you have the proper supplies
installed, you can retrieve the unique value printed on each serialized overlay patch by reading
the matching bar code printed on the lamination material next to the patch. This value provides
your application with a traceable identifier that links the patch applied to the card to the other
data used to personalize the card. Reading the bar code is an interactive mode operation. Refer to
“Read Data from a Serialized Laminate Bar Code” on page 37.

Laminating Sample Code

For working code showing Print Ticket control of laminating, printing, and polling for job status
and error conditions, and bar code read, refer to the following samples:

Visual C++, Visual C#, lamination
and VB.NET lamination_barcode_read
Java Java does not include a lamination sample at this time.

SDK Programmer’s Reference Manual 17

18

SDK Sample Code

Chapter 3: Interactive Mode
Using the IBidiSpl Interface

Interactive mode is used when your application needs to control the
movement of the card in the printer, retrieve data from the card, or
retrieve error and job status information.

Overview

The XPS Card Printer Windows driver uses the Microsoft IBidiSpl interface for bidirectional
communication between your application and the printer in interactive mode. The following
interactive mode functions are supported by this release of the driver SDK:

e Job control of interactive card personalization functions
e Job control for error detection and recovery

e Encode magnetic stripe

e Read magnetic stripe

e Smart card park (front or back of card)

e Monitor supplies and printer status

e Single-wire smart card park and personalization
e Read serialized patch overlay bar code

e Monitor and reset card counts

e Getinstalled printer options

e Lock and unlock a printer with locks

e Restart the printer

Printing, magnetic stripe encoding using escapes or fonts, topcoating, embossing, laminating,
and impressing are done outside interactive mode, but can be mixed with interactive functions
within the same job.

o Java does not have direct access to the IBidiSpl interface. A C++ helper DLL is provided
with the SDK that Java applications can use for interactive mode.

SDK Programmer’s Reference Manual 19

IBidiSpl Requests

The following IBidiSpl requests are used to implement the functions described in the “Overview”
on page 19:

Job control (normal)
m Printer.Print:StartJob:Set
m Printer.Print.EndJob:Set
m Printer.Action:Set

m Printer.JobStatus:Read

Job control (error state)
m Printer.PrintMessages:Read

m Printer.Action:Set

Card personalization
m Printer.MagstripeUnit:Back:Encode
m Printer.MagstripeUnit:Back:Read
m Printer.MagstripeUnit:Front:Encode
m Printer.MagstripeUnit:Front:Read
m Printer.SmartCardUnit:Front:Park
m Printer.SmartCardUnit:Back:Park
m Printer.SmartCardUnit:SingleWire:Connect
m Printer.SmartCardUnit:SingleWire:Disconnect
m Printer.SmartCardUnit:SingleWire:Transmit
m Printer.SmartCardUnit:SingleWire:Status
m Printer.SmartCardUnit:SingleWire:Control

m Printer.SmartCardUnit:SingleWire:GetAttrib

Printer and supplies capabilities and status
m Printer.PrinterOptions2:Read
m Printer.CounterStatus2:Read
m Printer.SuppliesStatus3:Read

m Printer.ResetCardCount:Set

20 Interactive Mode Using the IBidiSpl Interface

Laminator

m Printer.Laminator:BarcodeRead:Set

m Printer.Laminator:BarcodeReadAndVerify:Set
Printer Control

m Printer.Restart:Set

Lock control
m Printer.Locks:ChangelLockState:Set
m Printer.Locks:ChangePassword:Set
Deprecated—The following IBidiSpl requests have been deprecated:
e Printer.PrinterOptions:Read was replaced by the following in an earlier version of the driver:
m Printer.PrinterOptions2:Read
m Printer.CounterStatus2:Read
m Printer.SuppliesStatus:Read

e Printer.SuppliesStatus:Read and Printer.SuppliesStatus2:Read were replaced by the following
in an earlier version of the driver:

m Printer.SuppliesStatus3:Read

SDK Programmer’s Reference Manual 21

Java Helper DLL Interface

The following Java helper DLL functions are used to implement the functions described in the

“Overview” on page 19:
Job control (normal)

m StartJob

m Endlob

= Resumelob

m GetlobStatusXML
Job control (error state)

m Cancellob

Card personalization

m MagstripeEncode2

MagstripeRead2

SmartCardPark

m SCardConnect

SCardDisconnect

m SCardGetAttrib
m SCardStatus
m SCardTransmit
Printer and supplies capabilities and status
m GetPrinterOptions2
m GetPrinterCounterStatus2

m GetPrinterSuppliesStatus

22

Interactive Mode Using the IBidiSpl Interface

Order and Timing of Interactive Job Operations

The application must implement the following interactive operations in a specific order or at a
specific time:

e A Start Job request is always the first operation
e AnEndJob or Cancel Job request is always the last operation

e An End Job request must not be issued until printing operations for the job have entered the
driver spooler.

o Refer to the sample code for best-practices examples.

Determine the Success of an IBidiSpl Request

Because all IBidiSpl requests return success, the return value cannot be used to determine the
outcome of the request. IBidiSpl requests also return a printer status XML structure. This
structure contains information about whether the request succeeded or failed and, if it failed,
information about the error that was detected.

o For operations that return data from the printer, this structure also contains the data
if the operation succeeded.

The following example shows the printer status XML structure returned from a failed Startob
command. The command failed because the printer failed to pick a card.

<?xml version="1.0" ?>

<!-- Printer status xml file.-->

<PrinterStatus>
<ClientID>VISTATEST</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>780</PrinterJobID>
<ErrorCode>111</ErrorCode>
<ErrorSeverity>4</ErrorSeverity>
<ErrorString>Message 111: Card not picked.</ErrorString>
<DataFromPrinter><![CDATA[]]></DataFromPrinter>

</PrinterStatus>

SDK Programmer’s Reference Manual 23

The printer status structure contains the following elements:

Element Description of the element value

ClientID A unique identifier of the client that created the job. This
element is not used at this time.

WindowsJobID The Windows Job ID assigned by the operating system.
PrinterJoblD The Print job ID assigned by the driver.
ErrorCode If the command succeeded, the ErrorCode is O (zero). A non-

zero value means an error was detected. For non-zero
ErrorCode values, the ErrorSeverity and ErrorString elements
also contain values.

ErrorSeverity Errors are classified into severity levels (1, 2, 3, 4, or 5). The
severity level determines which recovery actions are possible.

ErrorString A short human-readable description of the error, including
the error number. This matches the message that displays on
the printer LCD panel.

DataFromPrinter If the command was intended to read data from the card in
the printer and the read operation was a success, this
element contains the data in the CDATA section.

Start and End an Interactive Job

24

To start a job that contains one or more interactive operations, your Visual C++, Visual C#,

or VB.NET application must call the IBidiSpl interface with the schema set to
Printer.Print:StartJob:Set. For printers with a multi-card input hopper, you can include the
input hopper from which to pick the card. For printers other than the SD260, you can check
printer and laminator or embosser supplies before starting the job. If nothing is specified, the
driver picks a card from hopper 1 and does not check supplies.

The Startlob request might fail and return error 506. This indicates that the driver or printer is
busy and cannot accept another job at this time. A laminating system can have multiple active
jobs, and your application might need to wait and retry the Startlob request when the printer is
ready to accept it. Refer to the source code samples to see how the StartJob request handles
error 506.

o e The input hopper selection and check supplies StartJob options are not supported
by Java at this time.

e Using the check supplies option will slow down batch printing.

Interactive Mode Using the IBidiSpl Interface

For Java, call the Startlob method of the dxpO1sdk_IBidiSpl_interop.dIl.
The start job request always must be the first IBidiSpl request.

To end a job, the Visual C++, Visual C#, or VB.NET application calls the IBidiSpl interface

with the schema set to Printer.Print:EndJob:Set. For Java, call the EndJob method of the
dxp01sdk_IBidiSpl_interop.dll. The end job command is issued after the last interactive operation
is successful.

o If printing follows the interactive operations, the end job request cannot be sent until
the print data appears in the spooler. Submitting an end job immediately results in
the job ending before the print data is detected. This results in a second card that
contains only the print data. The SDK sample code demonstrates a reliable method
for detecting that the print data is in the spooler.

|BidiSpl Stan Job request
Printer.Print:StartJob:Set

Basic Error Checking Action |
Check Status XML returned R t aft IBidis i
by IBidiSpl Request epeat after every |1BidiSpl reques \
\
' l
|BidiSpl Printer Action Set request ‘
EmorCode = 07 ND - Printer.Action:Set |
Action element set to: Cancel ‘
\
\
YES |
\
\
L
IBidiSpl End Job request
Mare? NO -
Printer.Print.EndJob:Set
) YES .
Continue with more operations Print data VES
v ooin spooler?
(o]

SDK Programmer’s Reference Manual 25

Sample Code

For working code showing interactive mode Start Job, End Job, and basic error recovery, refer to

the following samples:

Visual C++, Visual C#, magstripe
and VB.NET smartcard
Java Magstripe.java

SmartCard.java

26

Interactive Mode Using the IBidiSpl Interface

Get the Status of an Interactive Job

Your application can retrieve the status for the current interactive job to determine if the printer
is still actively processing the card or if the card is complete. The PrinterJoblID is used to identify
the job. This ID is part of the Printer Status structure returned from the Start Job request.

To retrieve job status, your application uses the IBidiSpl interface with the schema set to
Printer.JobStatus:Read to send an XML structure with the Printer Job ID of the current
interactive job. For Java, call the GetJobStatusXML method of the Java helper DLL
(dxp01sdk_IBidiSpl_interop.dll).

<?xml version=\"1.0\"?>

<!--job status xml-->

<JobStatus>
<PrinterJobID>5860</PrinterJobID>

</JobStatus>

The Job Status request returns the job status in another XML structure.

<?xml version="1.0" ?>

<!-- Job status xml file. -->

<JobStatus>
<ClientID>VISTATEST</ClientID>
<WindowsJobID>5</WindowsJobID>
<PrinterJobID>5680</PrinterJobID>
<JobState>JobActive</JobState>
<JobRestartCount>0</JobRestartCount>

</JobStatus>

The ClientID, WindowsJoblID, and PrinterJoblID have the same meaning as the Printer Status
elements returned from other IBidiSpl requests. The JobState and JobRestartCount are unique to
this request.

Element Description of the element value

JobState The state of the job. The value is one of the following:
JobActive, JobSucceeded, JobFailed, JobCancelled, or
NotAvailable.

JobRestartCount The number of times the job was retried. This is always
zero for interactive jobs.

SDK Programmer’s Reference Manual 27

Using the JobState value, your application can determine if the card is still being processed by the
printer or, if it has completed, whether it was personalized successfully.

JobState value What it means

JobActive A card is still being personalized by the printer.

JobSucceeded The card is complete. The job completed without a detected
error.

JobFailed The card is complete. An error forced the job to terminate

before the card personalization process completed.

JobCancelled The card is complete. The job was canceled before the card
personalization process completed.

NotAvailable There is no information for the PrinterJobID provided. Either
the value provided is wrong or this is no longer the current
job.

Sample Code

For working code showing interactive mode Job Status use, refer to the following samples:

Visual C++, Visual C#, magstripe

and VB.NET smartcard
status

Java SmartCard.java
JobStatusXML.java

28 Interactive Mode Using the IBidiSpl Interface

Interactive Mode Error Recovery

When the driver is in interactive mode, errors are reported back to your application through
the printer status structure returned by every IBidiSpl request. Your application also can get
this information by calling the IBidiSpl interface with the schema set to
Printer.PrintMessages:Read.

Error-Related Values in the Printer Status Structure

Three values in the Printer Status structure are used to communicate error information to your

application.
Element Description of the element value
ErrorCode If the command succeeded, the ErrorCode will be 0 (zero). A non-zero

value means an error was detected. The value of the ErrorCode element
will be one of the message numbers listed in Appendix A: "Error
Description Strings”. For non-zero ErrorCode values, the ErrorSeverity
and ErrorString elements also contain values.

ErrorSeverity

Errors are classified into severity levels (1, 2, 3, 4, or 5). The severity level
determines which error recovery actions are possible.

ErrorString

Contains a short description of the error, including the error number.
Appendix A: "Error Description Strings” lists the ErrorString values your
application can receive from the driver while in interactive mode. The
ErrorString value will be in the language of the operating system if the
language is one of the translations released with the driver.

ErrorSeverity | Severity description Action

1 Alert—Unrecoverable issue for job Cancel job

2 Critical —Unrecoverable issue for job Cancel job

3 Error—Unrecoverable issue for card; Restart or cancel job
recoverable issue for job

4 Warning—Recoverable issue for card Resume or cancel job

5 Notice Information only None required

SDK Programmer’s Reference Manual 29

Recovery from Errors

To clear an error while in interactive mode, your application uses the IBidiSpl interface with the
schema set to Printer.Action:Set to send an XML structure with the Printer Job ID of the
current interactive job, the ErrorCode you are responding to, and the action you want to take.
Java can call the Cancellob, Resumelob, or SendResponseToPrinter method of the Java helper
DLL (dxpO1sdk_IBidiSpl_interop.dll).

You must set the ErrorCode to match the error you are responding to for successful
error recovery.

The following example shows the structure sent to cancel a job when the input hopper is empty.

<?xml version="1.0"?>

<!--printer command xml-->

<PrinterAction>
<Action>100</Action>
<PrinterJobID>5860</PrinterJobID>
<ErrorCode>112</ErrorCode>

</PrinterAction>
Action Allowed for
value Action description ErrorSeverity level
100 Cancel—Reject the current card. End the current job. All
101 Resume—Attempt to continue with the current card. 4

Basic Error Recovery (Recommended)

The most robust form of error recovery from an interactive mode error is to cancel the job. Using
this error recovery strategy, your application reports the job as failed and, if a card has been
picked, it is ejected from the printer. After you correct the cause of the error, you can attempt the
card personalization job again.

Advanced Error Recovery

30

By evaluating the ErrorSeverity value, your application sometimes can offer to resume the job
after the cause of the error is corrected. In practice, this complicates error recovery because the
application must poll the driver for printer status in the event that the error is corrected and
cleared using the printer LCD display. If the ErrorCode goes to 0, the application can assume that
the error was cleared using the printer LCD. Polling the driver for printer messages is not available
to Java applications.

Interactive Mode Using the IBidiSpl Interface

Cancel All Jobs

If you know that your application is the only one sending jobs to the printer, you can cancel all the
jobs in the printer to return it to a known good state. This is not recommended for production
use, but can be helpful during development.

A laminating system can have multiple active jobs. Using Cancel All Jobs cancels even
those jobs that are not in an error state.

Sample Code

For working code showing how to cancel all jobs, refer to the following samples:

Visual C++, Visual C#, printer_control
and VB.NET
Java Java does not have a sample showing cancel all jobs.

Errors Cleared at the Printer

After an error condition is corrected at the printer, the operator can sometimes use either the
application or the printer’s front panel to report that the error is corrected. We recommend that
operators be instructed to use the application to acknowledge that error conditions are
corrected. Otherwise, the application may get out of sync with the state of the printer.

Suppress the Driver Message Display
If you prefer to have your application manage error reporting and resolution, you can configure

the driver to suppress the display of messages. Refer to Appendix D: "Suppressing the Driver
Message Display” for details.

SDK Programmer’s Reference Manual 31

Encode a Magnetic Stripe with Data

There are three ways to encode data onto a magnetic stripe on the back side of a card.

Use magnetic stripe escapes in the card data to instruct the driver to encode an IAT track; the
data is included between the escape characters. This is processed by the driver along with
the print data and does not require interactive mode. Refer to the “Magnetic Stripe Escapes”
section of the printer’s Driver Guide for details about how to use escapes for magnetic stripe
encoding.

Use the magnetic stripe fonts installed with the XPS Card Printer Driver to encode IAT or JIS
formatted data by placing the data on the card design and specifying the magnetic stripe font
for the format and track desired. This is processed by the driver along with the print data and
does not require interactive mode. Refer to the “Magnetic Stripe Fonts” section of the
printer’s Driver Guide for details about how to use magnetic stripe fonts for magnetic stripe
encoding.

Use the IBidiSpl interface to pass magnetic stripe data through the driver in the format
expected by the printer. This method is described in the following sections.

The printer must be configured to match the format of the magnetic stripe data
being sent.

Interactive Mode Magnetic Stripe Encoding

Using the IBidiSpl interface, a card’s magnetic stripe can be encoded on the front side or back side
of the card. The following assumes you are encoding to the back side of the card.

To encode a magnetic stripe with data, your application calls the IBidiSpl interface with the
schema set to Printer.MagstripeUnit:Back:Encode. For Java, call the MagstripeEncode2
method of the Java helper DLL (dxpO1sdk_IBidiSpl_interop.dll).

The IBidiSpl commands used to encode only the magnetic stripe on a card are:

1. Startlob—The printer starts the job and picks the card.

2. MagstripeEncode—The application sends the magnetic stripe track data.

3. EndJob—The printer ejects the card into the output hopper.

32

Interactive Mode Using the IBidiSpl Interface

The following flowchart illustrates magnetic stripe encoding:

Start Job request succeeded

v
IBidiSpl Magstripe Encode request M;ﬂﬂ::lj‘;mgﬂ
q 5 3
Printer .MagstripeUnit:Back:Encode P"”llm:lm
| eelee— SecewcwANE
Check Status XML returned . ng.Aetion
Dy ISP Reriedt Repeat after every IBidiSpl request

[i IBidiSpl Printer Action Sel request
ErrorCode = 07 MO L Printer . Action:Set |
\ Action element set to: Cancel

IBidiSpl End Job request 1
YES: Job Complete Ll 5 |
' Printer.Print.EndJob:Set

SDK Programmer’s Reference Manual 33

Magnetic Stripe Track Data Format

When using interactive mode magnetic stripe encoding, the magnetic stripe track data must be
provided in the XML format the printer expects. The track data itself must be encoded as UTF-8
and then converted to base64 ASCII. Your application also is responsible for sending track data
that is valid for the magnetic stripe format configured at the printer.

The following example shows an XML structure with three tracks of IAT data: track 1 = TRACK1,
track 2 = 1122, track 3 = 321.

<?xml version="1.0" encoding="UTF-8"?>
<magstripe >
<track number="1">
<base64Data>VFIBQOsx</base64Data>
</track>
<track number="2">
<base64Data>MTEyMg==</base64Data>
</track>
<track number="3">
<base64Data>MzIx</base64Data>
</track>
</magstripe >

Sample Code—Magnetic Stripe Encode

For working code showing interactive mode magnetic stripe encoding, refer to the following

samples:
Visual C++, Visual C#, magstripe
and VB.NET
Java Magstripe.java

34 Interactive Mode Using the IBidiSpl Interface

Read Data From a Magnetic Stripe

Using the IBidiSpl interface, data can be read from the tracks of a card’s magnetic stripe on the
back side of the card. To read data from the magnetic stripe, your application calls the IBidiSpl
interface with the schema set to Printer.MagstripeUnit:Back:Read. For Java, call the
MagstripeRead2 method of the Java helper DLL (dxpO1sdk_IBidiSpl_interop.dll).

Like all IBidiSpl requests, the printer status XML structure is returned to your application. The
magnetic stripe track data is returned inside the CDATA element of the printer status structure.
This data comes directly from the printer without any modification from the driver.

<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>
<ClientID>VISTATEST_{200AEAAC-CAQA-4AF6-BD77-083A5836AE1A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>5837</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<magstripe xmlns:SOAP-ENV="http://www.w3.0rg/2003/05/soap-envelope"” xmlns:SOAP-
ENC="http://www.w3.0rg/2003/05/soap-encoding"” xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:DPCLMagStripe="urn:dpcl:magstripe:2010-01-19" xsi:type="DPCLMagStripe:MagStripe"
SOAP-ENV:encodingStyle="http://www.w3.0rg/2003/05/soap-encoding">
<track number="1">
<base64Data>zw9PkBBQQzwIPkBBQUVITVFVWV1hZW1tcXV5FfICEiIyQllicoKSorLA==</
base64Data>
</track>
<track number="2">
<base64Data>MDEyMzQ1Njc40To7PDO+jc40To7PDO+MDEYMzQINg==</base64Data>
</track>
<track number="3">
<base64Data>MDEyMzQ1Njc40To7PDDEyMzQ1Njc40To7PDO+MDEyMzQ1Njc40To7PDO=</
base64Data>
</track>
</magstripe>]]></DataFromPrinter>
</PrinterStatus>

The track data must be converted from base64 ASCII to the format required by your application.

SDK Programmer’s Reference Manual 35

For example, a job consisting of magnetic stripe read, magnetic stripe encode, and printing would
use the following operations in the order specified:

Start Job—The printer starts the job and picks the card.
Magnetic Stripe Read—The application reads the magnetic stripe track data.

Magnetic Stripe Encode—The application sends the magnetic stripe track data.

1.
2
3
4. Print card side(s)—Use the Windows printing interface (GDI, WinForms, etc.), not IBidiSpl.
5. Wait for the print data to enter the spooler.

6

End Job—The printer completes printing and then ejects the card into the output tray.
Sample Code—Magnetic Stripe Read

For working code showing interactive mode magnetic stripe read, refer to the following samples:

Visual C++, Visual C#, magstripe
and VB.NET
Java Magstripe.Java

36 Interactive Mode Using the IBidiSpl Interface

Read Data from a Serialized Laminate Bar Code

If the CLM laminator is equipped with the optional bar code scanner, the IBidiSpl interface allows
you to read data from the bar code printed on the serialized overlay material. To read the bar
code data, your application calls the IBidiSpl interface with the schema set to either
Printer.Laminator:BarcodeRead:Set or Printer.Laminator:BarcodeReadAndVerify:Set.
The BarcodeRead command simply retrieves the bar code data and the card automatically
continues. When you use the BarcodeReadAndVerify command, the printer stops after the bar
code data is returned and waits for the application to instruct it to continue or to reject the card.

The bar code read commands differ somewhat from other commands in that the act of reading
the bar code in the laminator occurs after the card is printed. Thus, your application makes the
request to read the bar code and then must wait and check for the data to be returned. The
driver SDK interface allows you to specify a value for the wait time, or to allow an infinite wait
time (this is the default). We recommend that your application does not specify a timeout value.
This gives the laminator time to warm up, which can take up to several minutes if it is just
starting, before it accepts the card for processing.

You also have the option to save the bar code read results to a file.
Sample Code—Serialized Laminate Bar Code Read

For working code illustrating best practices for the serialized laminate bar code read, refer to the
following samples:

Visual C++, Visual CH, lamination_barcode_read
and VB.NET
Java Java does not support this feature at this time.

SDK Programmer’s Reference Manual 37

Place a Card in the Smart Card Station

Using the IBidiSpl interface, a card can be placed (parked) in the printer’s smart card
station where it can be read, personalized, or both. To park a card in the printer’s smart
card station, your application calls the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:Front:Park or Printer.SmartCardUnit:Back:Park. For Java,
call the SmartCardPark method of the Java helper DLL (dxpO1sdk_IBidiSpl_interop.dll).

After smart card personalization completes, your application controls if the card is placed in the
reject tray, or if it continues on to other personalization operations. To resume or cancel the job,
use the IBidiSpl interface with the schema set to Printer.Action:Set to send an XML structure
with the Printer Job ID of the current interactive job and the action you want to take.
<?xml version="1.0"?>
<!--printer command xml-->
<PrinterAction>

<Action>101</Action>

<PrinterJobID>5860</PrinterJobID>

<ErrorCode>0</ErrorCode>
</PrinterAction>

A Resume action (Action value = 101) indicates that smart card personalization completed
successfully, and the card is ready for further processing.

A Cancel action (Action value = 100) indicates that smart card personalization failed, and card
should be rejected without any further personalization. For Java, call either the ResumelJob,
Cancellob, or EndJob method of the Java helper DLL (dxpO1sdk_IBidiSpl_interop.dll).

For example, a job consisting of smart card encoding and printing would use the following
operations in the order specified:

1. Startlob—The printer starts the job and picks the card.
2. ParkCard—The printer parks the card at the smart card station.

3. Resumelob—The printer moves the card from the smart card station so that the card can be
processed further.

4. Print Card Side(s)—Use the Windows printing interface (GDI, WinForms, etc.), not IBidiSpl.
5. Wait for the print data to enter the spooler.

6. EndJob—The printer completes printing and then ejects the card into the output tray.

38 Interactive Mode Using the IBidiSpl Interface

Sample Code—Smart Card Park

For working code showing interactive mode smart card station park, refer to the following

samples:
Visual C++, Visual C#, smartcard
and VB.NET
Java SmartCard.java

Personalize a Smart Card

If your printer is equipped with a single-wire smart card reader, you can personalize the card
using the driver SDK after the smart card is parked. The IBidiSpl requests used to do this are:

e Printer.SmartCardUnit:SingleWire:Connect

e Printer.SmartCardUnit:SingleWire:Disconnect

e Printer.SmartCardUnit:SingleWire:Transmit

e Printer.SmartCardUnit:SingleWire:Status

e Printer.SmartCardUnit:SingleWire:GetAttrib

Printer.SmartCardunit:SingleWire:Connect

A Connect request establishes a connection between the calling application and a smart card
parked in the reader. If no card exists in the reader, an error is returned.

To connect to the smart card in the reader, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:Connect. For Java, call the SCardConnect method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

SDK Programmer’s Reference Manual 39

Smart Card Connect Request—Required Information
Your application must create an XML structure indicating the protocol to use (contact or
contactless). The driver receives this XML formatted data as a BIDI_BLOB.

<?xml version=\"1.0\"?>
<!--smartcard connect xml-->

<SmartcardConnect>
<ProtocolName>SCARD_PROTOCOL_CL</ProtocolName>
</SmartcardConnect>
Protocol Name Value Connection Type
SCARD_PROTOCOL_CL Contactless
SCARD_PROTOCOL _TO OR_T1 Contacted

Smart Card Connect Request—Return Values

e The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJoblD (if applicable, 0 for interactive mode jobs), PrinterJobID, and
ErrorCode.

m Ifthe ErrorCode is zero, the connection request was successful.

m If the ErrorCode is non-zero, the connection request failed. In this case, the printer status
XML file also contains values for ErrorSeverity and ErrorString.

e The CDATA section in the printer status XML structure returns any response from the smart
card reader.

40 Interactive Mode Using the IBidiSpl Interface

Smart Card Connect Request—Status Returned

The following example shows a printer status XML structure returned by a single-wire smart card
Connect IBidiSpl request. The smart card reader response is included in the CDATA section.

<?xml version="1.0"?>

<!--Printer status xml file.-->

<PrinterStatus>

<ClientID>Test-Win7_{716DD9A@-CF52-4176-B1CO-A10FA8DBO55A}</ClientID>

<WindowsJobID>0</WindowsJobID>

<PrinterJobID>6049</PrinterJobID>

<ErrorCode>0</ErrorCode>

<ErrorSeverity>0</ErrorSeverity>

<ErrorString></ErrorString>

<DataFromPrinter><![CDATA[

<?xml version="1.0"?><!--smartcard response xml-->

<SmartcardResponse>

<Protocol>SCARD_PROTOCOL_RAW</Protocol>

<State> </State>

<Status>SCARD_S_SUCCESS</Status>

<Base64Data> </Base64Data>

</SmartcardResponse>
11></DataFromPrinter></PrinterStatus>

Printer.SmartCardUnit:SingleWire:Disconnect

A Disconnect request terminates a connection previously opened between the calling application
and a smart card in the reader.

To terminate a connection, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:Disconnect. ForJava, call the SCard Disconnect method
of the Java helper DLL (dxpO1sdk_IBidiSpl_interop.dll).

Smart Card Disconnect Request—Required Information

Your application must create an XML structure indicating the disconnect method to use. The
driver receives this XML formatted data as a BIDI_BLOB.

<?xml version=\"1.0\"?>

<!--smartcard disconnect xml-->

<SmartcardDisconnect>
<Method>SCARD_LEAVE_CARD</Method>

</SmartcardDisconnect>

Disconnect Method Value Action
SCARD_LEAVE_CARD Leave as is
SCARD_RESET_CARD Reset the card
SCARD_UNPOWER_CARD Power down the card

SDK Programmer’s Reference Manual 41

Smart Card Disconnect Request—Return Values

e The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJoblD (if applicable, 0 for interactive mode jobs), PrinterJobID and
ErrorCode.

m If the ErrorCode is zero the request was successful.

m If the ErrorCode is non-zero the request failed. In this case, the printer status XML file
also contains values for ErrorSeverity and ErrorString.

e The CDATA section in the printer status XML structure returns any response from the smart
card reader.

Smart Card Disconnect Request—Status Returned

The following example shows a printer status XML structure returned by a single-wire smart card
Disconnect IBidiSpl request. The single-wire smart card reader response is included in the CDATA
section.

Sample XML file returned for disconnect

<?xml version="1.0"?>

<!--Printer status xml file.-->

<PrinterStatus>
<ClientID>Test-Win7_{716DD9A@-CF52-4176-B1CO-A10FA8DBO55A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[

<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>

<Protocol> </Protocol>

<State> </State>

<Status>SCARD_S_SUCCESS</Status>

<Base64Data> </Base64Data>

</SmartcardResponse>
11></DataFromPrinter></PrinterStatus>

Printer.SmartCardUnit:SingleWire:Transmit

A Transmit request sends a service request to the smart card and expects to receive data back
from the card.

To send a request, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:Transmit. For Java, call the SCardTransmit
method of the Java helper DLL (dxpO1sdk_IBidiSpl_interop.dll).

42 Interactive Mode Using the IBidiSpl Interface

Smart Card Transmit Request—Required Information

Your application must create a smart card transmit XML structure with the chip data encoded as
Base64 ASCII. The driver receives this XML formatted data as a BIDI_BLOB.

<?xml version=\"1.0\"?>

<!--smartcard transmit xml-->

<SmartcardTransmit>
<Base64Data>0/2RAP+RgXH+QABCAAAAAACBEYAXCACIGQ==</Base64Data>

</SmartcardTransmit>

Smart Card Transmit Request—Return Values

e The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJoblD (if applicable, 0 for interactive mode jobs), PrinterJobID, and
ErrorCode.

m If the ErrorCode is zero, the transmit request was successful.

m If the ErrorCode is non-zero, the transmit request failed. In this case, the printer status
XML file also contains values for ErrorSeverity and ErrorString.

e The CDATA section in the printer status XML structure returns any response from the smart
card reader.

Smart Card Transmit Request—Status Returned

The following example shows a printer status XML structure returned by a single-wire smart card
Transmit IBidiSpl request. The single-wire smart card reader response is included in the CDATA
section.

<?xml version="1.0"?>

<!--Printer status xml file.-->

<PrinterStatus>
<ClientID>agarwas-Win7_{716DD9A0-CF52-4176-B1CO-A10FA8DBO55A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>@</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[

<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>

<Protocol> </Protocol>

<State> </State>

<Status>SCARD_S_SUCCESS</Status>
<Base64Data>ZwA=</Base64Data>

</SmartcardResponse>
11></DataFromPrinter></PrinterStatus>

SDK Programmer’s Reference Manual 43

Printer.SmartCardUnit:SingleWire:Status

A Status request provides the current status of the smart card in the reader. You can call it any
time after a successful call to SCardConnect and before a successful call to SCardDisconnect. It
does not affect the state of the reader or reader driver.

To retrieve the smart card status, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:Status. For Java, call the SCardStatus method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

Smart Card Status Request—Return Values

e The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJoblD (if applicable, O for interactive mode jobs), PrinterJobID, and
ErrorCode.

m If the ErrorCode is zero, the status request was successful.

m If the ErrorCode is non-zero, the status request failed. In this case, the printer status XML
file also contains values for ErrorSeverity and ErrorString.

e The CDATA section in the printer status XML structure returns any response from the smart
card reader.

Smart Card Status Request—Status Returned

The following example shows a sample printer status XML structure returned by a single-wire
smart card Status IBidiSpl request. The single-wire smart card response is included in the CDATA
section.

<?xml version="1.0"?>
<!--Printer status xml file.-->
<PrinterStatus>
<ClientID>agarwas-Win7_{716DD9A0-CF52-4176-B1CO-A10FA8DBO55A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>
<ErrorCode>0</ErrorCode>
<ErrorSeverity>0</ErrorSeverity>
<ErrorString></ErrorString>
<DataFromPrinter><![CDATA[
<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>
<Protocol>SCARD_PROTOCOL_RAW</Protocol>
<State>SCARD_PRESENT|SCARD_POWERED|SCARD NEGOTIABLE</State>
<Status>SCARD_S_SUCCESS</Status>
<Base64Data>0/2RAP+RgXH+QABCAAAAAACBEYAXCACIGQ==</Base64Data>
</SmartcardResponse>
11></DataFromPrinter></PrinterStatus>

44 Interactive Mode Using the IBidiSpl Interface

Printer.SmartCardUnit:SingleWire:GetAttrib

A GetAttrib request retrieves the current reader attributes. It does not affect the state of the
reader, driver, or card.

To retrieve the smart card reader attributes, use the IBidiSpl interface with the schema set to
Printer.SmartCardUnit:SingleWire:GetAttrib.

Smart Card GetAttrib Request—Required Information

Your application must create a smart card status XML structure with the name of the reader
attribute you want information for. The driver receives this XML formatted data as a BIDI_BLOB.

<?xml version=\"1.0\"?>

<l--smartcard get attrib xml-->

<SmartcardGetAttrib>
<Attr>SCARD_ATTR_VENDOR_IFD_VERSION</Attr>

</SmartcardGetAttrib>

AttribName Action

SCARD_ATTR_VENDOR_NAME Reader Vendor
SCARD_ATTR_VENDOR_IFD_ Vendor-supplied interface device version.
VERSION (DWORD in the form OXMMmmbbbb where

MM = major version, mm = minor version, and
bbbb = build number)

SCARD_ATTR_VENDOR_IFD_TYPE Vendor-supplied interface device type (model
designation of reader)

SCARD_ATTR_VENDOR_IFD_SERIAL_ | Vendor-supplied interface device serial number
NO

Smart Card GetAttrib Request—Return Values

e The IBidiSpl interface returns a printer status XML structure. The printer status includes a
valid ClientID, WindowsJoblD (if applicable, 0 for interactive mode jobs), PrinterJobID, and
ErrorCode.

m If the ErrorCode is zero, the GetAttrib request was successful.

m If the ErrorCode is non-zero, the GetAttrib request failed. In this case, the printer status
XML file also contains values for ErrorSeverity and ErrorString.

e The CDATA section in the printer status XML structure returns any response from the smart
card reader.

SDK Programmer’s Reference Manual 45

Smart Card GetAttrib Request—Status Returned

The following is an example of a printer status XML structure returned by a single-wire smart card
GetAttrib IBidiSpl request. The single-wire smart card response is included in the CDATA section.
In this case, it is a request for the vendor name. The name is returned in the Base64Data element
as Base64 encoded ASCII and must be decoded by your application.

<?xml version="1.0"?>

<!--Printer status xml file.-->

<PrinterStatus>
<ClientID>agarwas-Win7_{716DD9A@-CF52-4176-B1CO-A10FA8DBO55A}</ClientID>
<WindowsJobID>0</WindowsJobID>
<PrinterJobID>6049</PrinterJobID>

<ErrorCode>0</ErrorCode>

<ErrorSeverity>0</ErrorSeverity>

<ErrorString></ErrorString>

<DataFromPrinter><![CDATA[

<?xml version="1.0"?><!--smartcard response xml-->
<SmartcardResponse>

<Protocol> </Protocol>

<State></State>

<Status>SCARD_S_SUCCESS</Status>

<Base64Data> 0/2RAP+RgXH+QABCAAAAAACBEYAXCACIGQ==</Base64Data>
</SmartcardResponse>

11></DataFromPrinter></PrinterStatus>

Sample Code—Single-Wire Smart Card Personalization

46

For working code showing personalization of a smart card, refer to the following samples:

Visual C++, Visual C#, smartcard_singlewire
and VB.NET
Java SmartCard_singlewire.java

The SDK sample code wraps the IBidiSpl interface providing an interface that is similar to the
Microsoft Windows SCard API. You are welcome to include this code in your application or
communicate directly to the IBidiSpl interface, as you prefer.

Interactive Mode Using the IBidiSpl Interface

Read and Write Data to MIFARE Classic over
Single-Wire

An SDK sample is included that demonstrates how to read and write data to a MIFARE Classic chip
using Duali smart card reader commands over a single-wire smart card connection.

Sample Code—Single-Wire MIFARE Classic Smart Card
Personalization

For working code showing personalization of a smart card, refer to the following samples:

Visual C++, Visual CH, smartcard_singlewire_mifare
and VB.NET
Java Java does not support this feature at this time.

Return Values from the Sample Code SCard
Wrapper

Return values are provided by the printer as strings, but PC/SC applications expect a numeric
HRESULT value. The SDK wrapper code converts the return string to the HRESULT value expected
by the application. Possible return values are either SCARD_S_SUCCESS or an error. You can find
PC/SC error code information at: http://msdn.microsoft.com/en-us/library/ms936965.aspx

Application Responsibilities with Single-Wire
Smart Card

Your application must be able to do the following:

e Verify that the single-wire smart card reader is available in the printer. You can use the
IBidiSpl interface to get the printer options to do this.

e Park the smart card before using the single-wire smart card reader, and move the card out of
the reader when the personalization is complete.

e Send data the chip can accept. The driver does not check or alter the data.

e Format the data so it can be understood by the printer and reader.
Applications written for PC/SC readers require modification to use the single-wire smart

card feature. The PC/SC interface commonly used to interact with USB-connected smart
card readers is not directly supported by the driver API.

SDK Programmer’s Reference Manual a7

Installed Printer Status, Printer Options, and
Supplies Status

Your application can determine the status of the printer, which options are available

in a printer, and information about the supplies loaded in the printer. To retrieve
printer status, your application uses the IBidiSpl interface with the schema set to
Printer.PrinterOptions2:Read. For Java, call the GetPrinterOptions2 method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

The expanded list of printer information described in the following section requires
Printer.PrinterOptions2:Read.

This request returns the printer status XML file.

<?xml version="1.0"?>

<!--Printer options2 xml file.-->

<PrinterInfo2>

<PrinterStatus>Ready</PrinterStatus>
<PrinterAddress>172.16.5.79</PrinterAddress>
<PrinterModel>CD870</PrinterModel>
<PrinterSerialNumber>C15133</PrinterSerialNumber>
<PrinterVersion>D3.12.3-0</PrinterVersion>
<PrinterMessageNumber>0</PrinterMessageNumber>
<ConnectionPortType>Network</ConnectionPortType>
<ConnectionProtocol>Version2Secure</ConnectionProtocol>
<OptionInputhopper>MultiHopperé6WithExceptionSlot</OptionInputhopper>
<OptionMagstripe>ISO</OptionMagstripe>
<OptionRewritable>None</OptionRewritable>
<OptionSmartcard>Installed</OptionSmartcard>
<OptionDuplex>Auto</OptionDuplex>
<OptionLock>Installed</OptionLock>
<LockState>Locked</LockState>

<PrintHead>Installed</PrintHead>

<ColorPrintResolution>300x300 | 300x600</ColorPrintResolution>
<MonochromePrintResolution>300x300|300x600|300x1200</MonochromePrintResolution>
<TopcoatPrintResolution>300x300</TopcoatPrintResolution>
<EmbossModule>Installed</EmbossModule>
<EmbosserVersion>El.1.24-0</EmbosserVersion>

</PrinterInfo2>

48 Interactive Mode Using the IBidiSpl Interface

Printer Status

The PrinterStatus element contains the state of the printer at the time of the request. Your
application can use this to determine if the printer is online and ready to accept a job.

PrinterStatus Value

Description

Unavailable The printer is not connected or is powered off.

Ready The printer is available to accept a job.

Busy The printer is processing a job.

Paused The printer has errors or has been paused.

Suspended The printer's front panel or Print Manager application is being
used.

Initialize The printer is powering up and not ready to accept a job.

Shutdown The printer is powering down and cannot accept a job.

Message Number

The MessageNumber element contains the printer error number if the printer is in an error state.
A value of zero means there is no error. (Refer to Appendix A: "Error Description Strings” for a list

of messages.)

SDK Programmer’s Reference Manual 49

Printer Connection Information

Element Value Description

PrinterAddress The IP address of the network printer

ConnectionPortType Identifies the physical connection being used to communicate
to the printers. The values are:

e Network
e USB

ConnectionProtocol Identifies the protocol used to communicate with the printer.
The values are:

e \Versionl
e \ersion2
e \ersion2Secure

Version2Secure is required if you want all the data exchanged
between the driver and printer to be encrypted.

Printer Options

Element Value Description

Optionlnputhopper The input hopper configuration for this printer. The
values are:
e SingleFeed

e SingleHopperWithExceptionSlot
e MultiHopper6WithExceptionSlot

OptionMagstripe The magnetic stripe configuration for this printer. The
values are:

e None
e ISO
e JIS

OptionRewritable Identifies if this printer supports rewritable cards. The
values are:
e None

e Installed

Note: For printers that support rewritable cards, the
rewritable feature must be enabled and the printer
configured correctly.

50 Interactive Mode Using the IBidiSpl Interface

Element Value

Description

OptionSmartcard

The smart card configuration for this printer. The values
are:

e None
e |Installed

e SingleWire

OptionDuplex

The duplex configuration for this printer. The values are:
e Manual

e Auto

OptionLock

The lock configuration for this printer. The values are:
e None

e Installed

LockState

The lock state if the printer has the lock option installed.
The values are:

e Locked
e Unlocked

This element is missing if the OptionLock value is None.

PrintHead

Indicates if this printer includes a print head. (The
printer might not have a printhead if you are connected
to an emboss-only CE system.) The values are:

e None

e Installed

ColorPrintResolution

The color printing resolutions supported by this printer.
This is a list of values separated by a "|" character. The
value list may include:

e 300x300
e 300x600

This element is missing if the PrintHead value is None.

MonochromePrintResolution

The monochrome printing resolutions supported by this
printer. This is a list of values separated by a "|"
character. The value list may include:

e 300x300
e 300x600
e 300x1200

This element is missing if the PrintHead value is None.

SDK Programmer’s Reference Manual

51

Element Value Description

TopcoatPrintResolution The topcoat printing resolutions supported by this
printer. At this time, this element always displays the
value 300x300.

This element is missing if the PrintHead value is None.

EmbossModule Indicates if this printer includes a CEM embosser. The
values are:
e None
e Installed

EmbosserVersion The embosser firmware version if the system includes an

embosser. The element is missing if the EmbossModule
value is None.

Laminator Indicates if the printer includes a laminator and, if so,
whether it has one or two lamination stations. The
values are:

e None
o L1
o 1,12

LaminatorFirmwareVersion The laminator firmware version if the system includes a
laminator. This element is missing if the Laminator value
is None.

Laminatorimpresser Indicates if the laminator includes the card impresser
option. The values are:

e None
e Installed

LaminatorScanner Indicates if the laminator includes the bar code scanner
option. The values are:
e None
e |Installed

Sample Code—Printer Status

For working code showing printer status, refer to the following samples:

Visual C++, Visual C#, status
and VB.NET
Java PrinterStatusXML.java

52 Interactive Mode Using the IBidiSpl Interface

Supplies Information

Your application can determine the status of supplies using the IBidiSpl interface with the schema
set to Printer.SuppliesStatus3:Read. For Java, call the GetPrinterSuppliesStatus method of
the Java helper DLL (dxp0O1sdk_IBidiSpl_interop.dll).

The request returns the supplies status XML file.

<?xml version="1.0"?>
<PrinterSupplies3>

<PrinterStatus>Ready</PrinterStatus>
<PrintRibbonType>YMCKT</PrintRibbonType>
<RibbonRemaining>76</RibbonRemaining>
<RibbonSerialNumber>E@055000008D355F</RibbonSerialNumber>
<RibbonLotCode>10232012 </RibbonLotCode>
<RibbonPartNumber>535000003</RibbonPartNumber>
<IndentRibbon>Installed</IndentRibbon>
<IndentRibbonRemaining>20</IndentRibbonRemaining>
<TopperRibbonType>Gold</TopperRibbonType>
<TopperRibbonRemaining>40</TopperRibbonRemaining>

</PrinterSupplies3>

Element Value

Description

PrintRibbonType

The type of ribbon installed in the printer. The value
returned will be one of the supported ribbon types for
the printer, such as YMCKT, ymcKT, KT, and so on.

RibbonRemaining

The amount of unused ribbon as a percent.

RibbonSerialNumber

The serial number of the ribbon.

RibbonLotCode

The lot code of the ribbon.

RibbonPartNumber

The part number of the ribbon.

IndentRibbon

If the system includes an embosser, this element
indicates if indent ribbon is installed. The values are:

e None

e Installed

IndentRibbonRemaining

The amount of unused indent ribbon as a percent.

SDK Programmer’s Reference Manual

53

Element Value

Description

TopperRibbonType

The type of topping foil installed in the printer. The
values are:

e Silver
e Gold

e Black
o White

e Blue

TopperRibbonRemaining

The amount of unused topping foil as a percent.

L1Laminate

Indicates if the laminator L1 station is reporting that it
has a supply loaded. The values are:

e None

e Installed

LlLaminateType

The universal supply code of the supply.

L1LaminateRemaining

The amount of unused supply as a percent.

L1LaminateSerialNumber

The serial number of the supply.

L1LaminateLotCode

The lot code of the supply.

L1LaminatePartNumber

The part number of the supply.

L2Laminate

Indicates if the laminator L2 station is reporting that it
has a supply loaded. The values are:

e None

e Installed

L2LaminateType

The universal supply code of the supply.

L2LaminateRemaining

The amount of unused supply as a percent.

L2LaminateSerialNumber

The serial number of the supply.

L2LaminateLotCode

The lot code of the supply.

L2LaminatePartNumber

The part number of the supply.

Interactive Mode Using the IBidiSpl Interface

Sample Code—Supplies Status

For working code showing supplies status, refer to the following samples:

Visual C++, Visual CH, status
and VB.NET
Java PrinterSuppliesStatus.java

Card Counts

Your application can get the card count information and reset the printer’s resettable card counts.

Get Card Counts

To get the card count information stored in the printer using the IBidiSpl interface, set the schema
to Printer.CounterStatus2:Read. For Java, call the GetPrinterCounterStatus2 method of the
Java helper DLL (dxp01sdk_IBidiSpl_interop.dll).

The request returns the supplies status XML file.

Status XML File for Single Input Hopper Printer

<?xml version="1.0"?>

<!--Printer counter2 xml file.-->

<CounterStatus2>
<PrinterStatus>Ready</PrinterStatus>
<CurrentPicked>15</CurrentPicked>
<TotalPicked>15</TotalPicked>
<CurrentCompleted>14</CurrentCompleted>
<TotalCompleted>14</TotalCompleted>
<CurrentRejected>1</CurrentRejected>
<TotalRejected>1</TotalRejected>
<CurrentLost>0</CurrentLost>
<TotalLost>@</TotalLost>
<CurrentPickedException>0@</CurrentPickedException>
<TotalPickedException>@</TotalPickedException>
<CardsPickedSinceCleaningCard>100</CardsPickedSinceCleaningCard>
<CleaningCardsRun>1</CleaningCardsRun>
</CounterStatus2>

SDK Programmer’s Reference Manual 55

Status XML for Six-Position Input Hopper Printer

56

<?xml version="1.0"?>

<!--Printer counter2 xml file.-->

<CounterStatus2>

<PrinterStatus>Ready</PrinterStatus>
<CurrentPicked>371</CurrentPicked>

<TotalPicked>371</TotalPicked>

<CurrentCompleted>298</CurrentCompleted>
<TotalCompleted>298</TotalCompleted>
<CurrentRejected>71</CurrentRejected>
<TotalRejected>71</TotalRejected>

<CurrentlLost>2</CurrentLost>
<TotallLost>2</TotallLost>

<CurrentPicked1>189</CurrentPickedl>
<TotalPicked1>189</TotalPickedl>
<CurrentPicked2>43</CurrentPicked2>

<TotalPicked2>43</TotalPicked2>

<CurrentPicked3>38</CurrentPicked3>

<TotalPicked3>38</TotalPicked3>

<CurrentPicked4>36</CurrentPicked4>

<TotalPicked4>36</TotalPicked4>

<CurrentPicked5>34</CurrentPicked5>

<TotalPicked5>34</TotalPicked5>

<CurrentPicked6>31</CurrentPicked6>

<TotalPicked6>31</TotalPicked6>

<CurrentPickedException>@</CurrentPickedException>
<TotalPickedException>@</TotalPickedException>
<CardsPickedSinceCleaningCard>100</CardsPickedSinceCleaningCard>
<CleaningCardsRun>1</CleaningCardsRun>

</CounterStatus2>

Element Value

Description

CurrentPicked

Number of cards picked by the printer. Can be reset at
the printer with proper permission.

TotalPicked

Total number of cards picked by this printer.

CurrentCompleted

Number of cards successfully completed by the printer.
Can be reset at the printer with proper permission

TotalCompleted

Total number of cards successfully completed by the
printer.

CurrentRejected

Number of cards that were rejected by the printer
because they failed or were canceled. Can be reset at
the printer with proper permission.

TotalRejected

Total number of cards that were rejected by the printer
because they failed or were canceled.

Interactive Mode Using the IBidiSpl Interface

Element Value Description

CurrentLost A calculated value for the cards that were neither
completed nor rejected. Can be reset at the printer with
proper permission.

TotallLost Total number of cards that were neither completed nor
rejected.
CurrentPickedException Number of cards picked from the exception slot. The

driver does not provide a means to select the exception
slot so this number is typically zero.

TotalPickedException Total number of cards picked from the exception slot.
CurrentPicked1—Current Number of cards picked from a specific hopper of a
Picked6 multi-card hopper printer. Can be reset at the printer

with proper permission.

TotalPicked1-TotalPicked6 Total number of cards picked from a specific hopper of a
multi-card hopper printer.

CardsPickedSinceCleaningCard | Number of cards the printer has picked since it was
cleaned. This resets when the first card is picked after
the printer has been cleaned.

CleaningCardsRun Number of cleaning cards run through the printer.

Reset Card Counts

To reset the resettable card count values stored in the printer using the IBidiSpl interface, set the
schema to Printer.ResetCardCount:Set.

o This function is not available for Java.

Sample Code—Card Counts

For working code showing card counts, refer to the following samples:

Visual C++, Visual CH, status—Use to obtain card count information
and VB.NET printer_control—Use to reset card counts
Java PrinterCounterStatus.java

SDK Programmer’s Reference Manual 57

Locking
If your printer is equipped with locks, your application can lock and unlock the printer, as well as
change the password needed to unlock the printer. The IBidiSpl requests used to do this are:
e Printer.Locks:ChangelLockState:Set
e Printer.Locks:ChangePassword:Set

Lock or Unlock the Printer

Your application must create an XML structure with the lock state and password. The driver
receives this XML formatted data as a BIDI_BLOB.

<?xml version="1.0" ?>

<ChangelLocks>
<LockPrinter>%d</LockPrinter>
<CurrentPassword>%1s</CurrentPassword>

</ChangelLocks>
LockPrinter Value Description
1 Lock printer
2 Unlock printer

The CurrentPassword value must be set to the correct password to successfully lock or unlock the
printer.

Change the Lock/Unlock Password

Your application must create an XML structure with the lock state and password. The driver
receives this XML formatted data as a BIDI_BLOB.

<?xml version="1.0" ?>
<ChangelLocksPassword>
<LockPrinter>1</LockPrinter>
<CurrentPassword>test</CurrentPassword>
<NextPassword>abcd</NextPassword>
</ChangelLocksPassword>

Your application must supply both the correct CurrentPassword and the new password in the
NextPassword element.

o LockPrinter is always set to 1. Changing the lock password locks the printer if it is
unlocked.

58 Interactive Mode Using the IBidiSpl Interface

Password Rules

Use the following rules to make sure that the password is considered valid by the printer:
e A password must have at least 4 legal characters. Legal characters are:

m alphanumeric (English) (A-Z, a—z, 0-9)

m plus(+)

m slash (/)

m dollar sign (S)

e A password is case sensitive.

e Empty quotes "" are used to disable the locking password.

If the printer is configured to not require a password, the printer locks or unlocks ignoring
whatever password is sent.

e When the locking password is changed, the NextPassword value becomes the
CurrentPassword for the next attempt to lock or unlock the printer.

When you send empty quotes ("") as the NextPassword value, the printer no longer requires

a password to lock or unlock.

Determine the Success of a Lock Request

For both lock requests, the status is returned in another XML structure. The following is an
example of an attempt to lock a printer that does not have locks installed.

<?xml version="1.0"?>

<!--Printer status xml file.-->

<PrinterStatus>
<ClientID>agarwas-Win7_{32DCD216-3B4E-4806-9661-3F80D6D99F72}</ClientID>
<WindowsJobID>@</WindowsJobID>
<PrinterJobID>@</PrinterJobID>
<ErrorCode>511</ErrorCode>
<ErrorSeverity>2</ErrorSeverity>
<ErrorString>Message 511: Cannot lock or unlock the printer. Locks are not
installed.</ErrorString>
<DataFromPrinter><![CDATA[]]></DataFromPrinter>

</PrinterStatus>

Sample Code—Locking

For working code showing the lock operation, refer to the following samples:

Visual C++, Visual C#, locks
and VB.NET
Java Java does not support locking at this time.

SDK Programmer’s Reference Manual 59

Restart Printer

Your application can restart a printer using the IBidiSpl interface with the schema set to

Printer.Restart:Set.

Sample Code—Restart Printer

For working code showing a printer restart, refer to the following samples:

Visual C++, Visual C#,
and VB.NET

printer_control

Java

Java does not support restart printer at this time.

Interactive Mode Best Practices

e When interactive mode operations are used for card personalization, the driver will not
accept a job until the interactive operations for the active job complete. It is the
responsibility of your application to manage the card production queue and retry a job if the
job request is denied because another job is active. Refer to “Start and End an Interactive

Job” on page 24.

e Your application should always verify that the printer is online before starting a job. Refer to
“Installed Printer Status, Printer Options, and Supplies Status” on page 48 for information
about how to request and interpret the printer status to determine if the printer is online.

e Your application should always check the Printer Status returned by an IBidiSpl request to
determine if the request succeeded or failed.

e When recovering from an error while in interactive mode, always use the PrinterJoblD value
returned by the Start Job request. The currently active job in the printer will be canceled if
your application sends a cancel action with a printer job ID of 0. Unless this printer is
dedicated to your application, the currently active job may not be the job you intend to

cancel.

60

Interactive Mode Using the IBidiSpl Interface

Appendix A: Error Description
Strings

Message Description

100 Request not supported.
101 Job could not complete.
102 Card not in position.

103 Printer problem.

104 Critical problem.

105 Magstripe data error.

106 Magstripe data not found.
107 Magstripe read data error.
108 Magstripe read no data.
109 Print ribbon problem.

110 Print ribbon out or missing.
111 Card not picked.

112 Card hopper empty.

113 Close cover to continue.
114 Cover opened during job.
116 Magstripe not available.
117 Reader not available.

SDK Programmer’s Reference Manuall A-1

A-2

Message

Description

118 Print ribbon type problem.
119 Print ribbon not supported.
120 User paused the printer.
121 Print ribbon not identified.
122 Magstripe format problem.
123 Insert new card side 1 up.
124 Insert same card side 2 up.
125 Emboss critical error.

126 Emboss format error.

127 Emboss transport error.
128 Embosser card jam.

129 Embosser topper jam.

130 Embosser card entry jam.
131 Embosser card exit jam.
132 Embosser card stack full.
133 Embosser card reject full.
134 Indent ribbon low.

135 Indent ribbon supplies out.
136 Indent ribbon break.

137 Embosser wheel error.

138 Embosser indent error.

139 Card not in position in embosser.
140 Embosser not available.
141 Close emboss cover.

Error Description Strings

Message

Description

142 Emboss cover error.

143 Topping foil problem.

144 Topping foil out.

145 Topping foil type problem.
146 Topping foil support err.
147 Topping foil no tag found.
148 Topping foil low.

149 Option not installed.

150 Print while unlocked.

151 Failed to lock.

152 Insert new card side 2 up.
153 Insert same card side 2 up.
170 Insert new card side 1 up.
171 Insert same card side 1 up.
172 Insert cleaning card.

173 Improper shutdown.

177 Laminator not available.
196 Laminator error critical.
197 Laminator entry card problem.
198 L1 area card problem.

199 L2 area card problem.

200 Laminator exit card problem.
201 L1 supply problem.

202 L1 supply out or missing.

SDK Programmer’s Reference Manuall

A-3

A-4

Message

Description

203 L1 supply type problem.
204 L1 supply not supported.
205 L1 supply not identified.
206 L2 supply problem.

207 L2 supply out or missing.
208 L2 supply type problem.
209 L2 supply not supported.
210 L2 supply not identified.
211 L1 heater problem.

212 L2 heater problem.

213 L1 heater sensor problem.
214 L2 heater sensor problem.
215 L1 heater roller problem.
216 L2 heater roller problem.
217 Debow problem.

218 Impresser problem.

219 Impresser sensor problem.
220 Impresser heater problem.
221 Bar code scanner problem.
222 Firmware version mismatch
223 Laminator system mismatch
224 Supply region not valid

225 Rewrite config mismatch
500 The printer is not available.

Error Description Strings

Message

Description

501 The printer connection was lost.

502 The card data is missing or is not usable.

504 The card data is missing or is not usable.

505 USB communication issue.

506 A card is currently processing.

507 The printer is unlocked.

508 The printer is shutting down.

509 The printer is offline or suspended.

510 The printer is unlocked.

511 Cannot lock or unlock the printer. Locks are not installed.

512 Cannot lock or unlock the printer. The password is incorrect or
invalid.

513 Cannot lock or unlock the printer. The printer is busy.

514 Cannot lock or unlock the printer. The cover is open.

515 Failed to lock or unlock the printer. The locks did not function.

516 Timeout expired before bar code could be read.

517 Wrong printer job ID.

518 Unable to print.

SDK Programmer’s Reference Manuall

A-5

A-6

Error Description Strings

Appendix B: Print to a File
with the XPS Card Printer
Driver

You can “print” without having a printer attached using the XPS Card Printer Driver. The resultis a
zip file that contains the PNG images that normally would be sent to the printer.

1. Create a folder to hold the files (for example: D:\Temp\DriverPrintFiles). This folder is used in
Step 3.

2. Install a network printer (if not already installed). Use the XPS Card Printer installation
instructions to install a network printer if one is not already installed. When the Configure
Port window displays, follow the instructions in Step 3.

3. Create and assign the printer to a local port. If you are installing a new printer, the installation
displays the Ports tab on the Printer Properties window. If a printer is installed already, open
the Printer Properties window for the printer and click the Ports tab.

a. Create a new local port:
i. Click Add Port.
ii. Select Local Port and click New Port.

iii. Enter the path to the folder you created in Step 1 and add the file name: pages.zip.
For example: D:\Temp\DriverPrintFiles\pages.zip.

SDK Programmer’s Reference Manual B-1

b. Assign the printer to the new local port. The new local port is selected automatically.
i. Click Apply.

The screen resembles the following.

| Gorornl | Sharng | Pots | Achvarscod | Colr Marssgoment Porder Souss | Coved Conrda Hount

s 5 Card Printer (Copy 1)

Print 1o the fellowing pedt{s), Detuments will print to the first free

rhecked par.
Part Descrption Frnter -
[WPSPar: Lecal Part Microsoft XPS D¢

7 muk: Lecal Port Send To Oneliots

[EATemp' Driverlutput| pageszip Lecal Port PS5 Card Printer
Bl T emp Dl Fdes pageaop Lecal Port 05 Card Penber

1 CPWE CulePDF W CuteFDF Witkes

[CRDMETL: Metwork Po... Datscard Printer
‘ '. m]
| Addpen. || DoeePor | | ConfiguePom. |

¥ Enable brdwectonal suppor
Ul Enable printer poching

i ==

ii. Click OK to close the Printer Properties window.

Print as usual. After printing, open the folder you created. A list of files similar to the
following displays:

o Include in kbrary = Share with = Burmn Hew folder

-

MHame Date modiied Type Size
1 peges_job0004 0000 zip 1AMN5 1001 AM Windip File I KB
T peges_jobd005 000 zip LAN5 1043 AM Windip File {54 KB

T pages_jobl00s 0001 zip 1AVALS 13 AM Windip Filg el

Print to a File with the XPS Card Printer Driver

5. Inspect the printer-ready image files.
to the following displays:

MName Type

BeiK.png | PNG image

B Color,png PMG image

B Topcoat.png PMG image

=] manifestaml AML Document

Unzip the job you want to inspect. A list of files similar

Modified Size Ratio Packed FPath
1972015 10:11 AM 38 4% 1815
1/9/2015 10:11 AM 230587 1% 228055
1972015 10:11 AM 180 d6% 93
1972015 10:11 AM 6431 55% 287

If you encoded magnetic stripe data, the list will include an additional XML file containing that

data formatted for the printer.

SDK Programmer’s Reference Manual

B-4

Print to a File with the XPS Card Printer Driver

Appendix C: Using the Java
SDK Sample Code with
Eclipse

The XPS Driver SDK Java samples work with either the 32- or 64-bit Java runtimes. Make sure a
Java runtime is installed on your computer. From the command line, issue 'java -version':

C:\Users\fellmad>java -version

java version "1.6.0_23"
Java(TM) SE Runtime Environment (build 1.6.0_23-be5)
Java HotSpot(TM) Client VM (build 19.0-b09, mixed mode, sharing)

1. Extract the XPS Driver SDK zip file to a folder. For example: D:\java\xps_driver_sdk:

d:\java\xps_driver_sdk>dir
Directory of d:\java\xps_driver_sdk

03/04/2015 ©3:55 PM <DIR> doc

03/02/2015 01:46 PM 21 readme.txt

03/04/2015 03:55 PM <DIR> samples

03/04/2015 ©3:51 PM 1,990,963 XPS_Card_Printer_SDK.zip

2. Start Eclipse and create a new workspace.

e worceece oncro .~
Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session,

Workspace: Ch\Users\fellmad\xps_driver_sdk -

[] Use this as the default and do not ask again

OK] l Cancel

SDK Programmer’s Reference Manual C-1

C-2

3.

Import the SDK samples.

a. Select File | Import and Existing Projects into Workspace.

Create new projects from an archive file or directory.

Select an import source:

| type filter text

= General
@-‘ Archive File
% Existing Projects into Workspace
[, File System
= Preferences
= CVs
= Run/Debug
= Tasks
= Team
= XML

Using the Java SDK Sample Code with Eclipse

b. Click Next.

Impon Frojects

Select a directory to search for edsting Eclipse projects.

& Select rool dweclions &\ javatups_driver_sdidsamples'jeva
elect archrve hile

Frajecls;

o ups driver sdk samples (B javateps_driver_sdidsamples' java’ chopl Sedect Al

Devebecd Adl

Copy projects intn workspace

Workang sels

Add praject ta working sets

Fineh | Cancel

C. Browse to the 'samples\java' folder under the folder you created in Step 1.
d. Click Finish.

4. Create arunnable JAR file.
a. Inthe Eclipse Package Explorer, select com.sun.jna.examples.

b. Right-click com.sun.jna.examples and select Run As, then Java Application.

SDK Programmer’s Reference Manual

C. Create arunnable JAR file using File | Export and selecting Java- | Runnable JAR File:

ate Search Project Run Window Help

File Edit Mavigate
[BrOD-Q~ BEr ™D -
I3 Package Explorer &2 == = 0| B TaskvList 23

=1 A sidl SRR S
I .
= xps driver sdk samples Find al ¥ a1y Ad
' — —% Unc
@ Export = = 4
A

e (4]

Export all resources required to run an application into a JAR file on the local
file system,
Select an export destination: nect Mylyn
type filter text hect to your task and A
(= General e 07
= Java | B is not available.
L1 JAR file |
21 Javadoc
..y Runnable JAR file
& Run/Debug
= Tasks
= Team
= XML

Resource Path

© Concel
|

Using the Java SDK Sample Code with Eclipse

d. When prompted, select XPS_Java_SDK - xps driver sdk samples for the Launch
configuration. For the JAR filename, use dxpO1Java_SDK.jar:

re- B e-0-Q- HE- O -Gl -

8 Packings Explone
a g wps drveer pfi samples
a _‘ we
[amddd
F comdetscard aprpnnter e mample
M com s jra nample:
[g
& com
B, JRE Syitenn Libiary
W Bafpranced Libesnsy

& Fyncable \AF Filg Export

Fusnnabie LAF Fils Spocificains

Seleera larn Applicatien’ launch sonfiguratian b ute 18 Sreate & runsakle LAR.

Lssrech condupurabio
WP Rarva_BDH - xpy direer vk pamples -
Expan gesnation:
dgrelops_diver_sddarmplejrvadop 0 lawe_S0E pm - Browie..
Liksrary handng
Estyat rogpassend Bbe precs b ot sled JAR
@ Package requited lbrases ints gonsented AR
Cropy requined Bbuarin into » ve-folder net bo the gemarsted JAR

Lxree 1 ANT scripi

K 4 Back Fifuss _I Camerel

This creates a JAR file in the location you specify:

d:\java\xps_driver_sdk\samples\java>dir
Directory of d:\java\xps_driver_sdk\samples\java

03/04/2015 ©04:19 PM
03/04/2015 ©04:28 PM
03/04/2015 ©3:55 PM

<DIR>

<DIR>

dxp@l1Java_SDK
1,033,154 dxpelJava_SDK.jar
Library

e. Runthe JAR file with no parameters to get help and to see the command line options:

d:\java\xps_driver_sdk\samples\java>java -jar dxp@lJava_SDK.jar

-n <printername>. Required.

-p Print

-mr Magnetic stripe read
-me Magnetic stripe encode
-sc Park a smart card

SDK Programmer’s Reference Manual

Try -n "xps card printer"
[1][d][e][number]
(p][1][d]
[mr][p][1][d]
[me][p][1][d][b]

C-5

C-6

Using the Java SDK Sample Code with Eclipse

Appendix D: Suppressing the
Driver Message Display

If you want your application to present printer and driver messages to the user and resolve errors
directly, you can suppress the display of messages by the driver. This is known as “silent mode.”

Enabling Driver Silent Mode

1. Silent mode is enabled when the following registry setting is present and the data is set
correctly. This registry key must be created manually.

Key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\Printers
Value Name DXPO1SilentMode

Value Type REG_DWORD

Data 1 = enable, any other value disable

2. The driver checks the DXP01SilentMode setting at startup.

o To guarantee that the setting takes effect, restart the computer after you create or
modify the registry setting.

SDK Programmer’s Reference Manual

D-1

Silent Mode Operation Notes

D-2

Enabling silent mode causes suppression of pop-up messages for all instances (printers) of
the XPS Card Printer driver for all user accounts on the system.

The SDK application can retrieve the error message any time using dxp01sdk:PRINTER _
MESSAGES. In addition, most of the SDK calls include printer errors as part of the status
information returned to the application.

The application can cancel jobs using the SDK, including canceling all jobs in the printer.
When “cancel all jobs” is requested, the printer will cancel all of its jobs. The driver will also
cancel all the driver jobs that are in an error state.

The printer operator can cancel the job using the LCD panel. When this happens,
an error is removed from the driver automatically. Make sure that the application
accounts for this possibility.

When the error is a driver condition (a 500-level message), the application must resolve the
error because the printer operator won’t be aware of the issue (the printer does not issue an
error). The driver will not process the next job until the 500-level message is resolved. The
application can either use “cancel all jobs” to cancel the job, or it can issue job-specific cancel
or resume commands to recover from the error.

Suppressing the Driver Message Display

Appendix E: References

With Microsoft .NET Framework, application developers have a rich set of printing and print
system management APIs. At the core of this functionality is the XPS print path. The following link
provides an overview of XPS Windows printing:

http://msdn.microsoft.com/en-us/library/ms742418.aspx

A PrintTicket defines the settings of a print job. A PrintTicket object is an easy-to-work-with
representation of a certain type of XML document called a PrintTicket document. The following
link explains more about PrintTicket class:

http://msdn.microsoft.com/en-us/library/system.printing.printticket.aspx

Windows has improved bidirectional printer communication (Bidi communication), starting with
Windows XP. This allows drivers and applications to make requests to, and get responses from, a
printer device. The following link explains more about Bidi printer communication:

http://msdn.microsoft.com/en-us/library/dd183366(v=VS.85).aspx

The IBidiSpl interface allows an application to send a Bidi request to the printer. The following link
explains more about the IBidiSpl interface:

http://msdn.microsoft.com/en-us/library/dd144980(v=VS.85).aspx

SDK Programmer’s Reference Manual E-1

E-2

References

	Datacard Windows Driver Software Development Kit Programmer's Reference Guide
	Table of Contents
	Chapter 1: Introduction
	Installation

	Chapter 2: SDK Sample Code
	Sample Code
	Samples Included in the SDK
	Print Sample (Not Interactive)
	Magnetic Stripe Sample
	Smart Card Sample
	Single-Wire Smart Card Sample
	Single-Wire MIFARE Classic Smart Card Sample
	Lamination Sample
	Read and Verify Laminator Serialized Overlay Sample
	Emboss and Indent Sample
	Print Locking Sample
	Printer Control Sample
	Status Sample

	Sample Code Location

	Developer Environments
	Printing
	Text Printing
	Raster Graphics Printing
	Vector Graphics Printing
	Topcoat and Print Blocking
	Controlling Card Printing Preferences
	Sample Code that Demonstrates Printing
	View Print Separations
	Get the Status of a Print Job

	Embossing
	Embossing Sample Code

	Laminating
	Laminator Bar Code Read
	Laminating Sample Code

	Chapter 3: Interactive Mode Using the IBidiSpl Interface
	Overview
	IBidiSpl Requests
	Java Helper DLL Interface
	Order and Timing of Interactive Job Operations
	Determine the Success of an IBidiSpl Request
	Start and End an Interactive Job
	Sample Code

	Get the Status of an Interactive Job
	Sample Code

	Interactive Mode Error Recovery
	Error-Related Values in the Printer Status Structure
	Recovery from Errors
	Basic Error Recovery (Recommended)
	Advanced Error Recovery
	Cancel All Jobs
	Errors Cleared at the Printer
	Suppress the Driver Message Display

	Encode a Magnetic Stripe with Data
	Interactive Mode Magnetic Stripe Encoding
	Magnetic Stripe Track Data Format
	Sample Code—Magnetic Stripe Encode

	Read Data From a Magnetic Stripe
	Sample Code—Magnetic Stripe Read

	Read Data from a Serialized Laminate Bar Code
	Sample Code—Serialized Laminate Bar Code Read

	Place a Card in the Smart Card Station
	Sample Code—Smart Card Park

	Personalize a Smart Card
	Printer.SmartCardUnit:SingleWire:Connect
	Smart Card Connect Request—Required Information
	Smart Card Connect Request—Return Values
	Smart Card Connect Request—Status Returned

	Printer.SmartCardUnit:SingleWire:Disconnect
	Smart Card Disconnect Request—Required Information
	Smart Card Disconnect Request—Return Values
	Smart Card Disconnect Request—Status Returned

	Printer.SmartCardUnit:SingleWire:Transmit
	Smart Card Transmit Request—Required Information
	Smart Card Transmit Request—Return Values
	Smart Card Transmit Request—Status Returned

	Printer.SmartCardUnit:SingleWire:Status
	Smart Card Status Request—Return Values
	Smart Card Status Request—Status Returned

	Printer.SmartCardUnit:SingleWire:GetAttrib
	Smart Card GetAttrib Request—Required Information
	Smart Card GetAttrib Request—Return Values
	Smart Card GetAttrib Request—Status Returned

	Sample Code—Single-Wire Smart Card Personalization

	Read and Write Data to MIFARE Classic over Single-Wire
	Sample Code—Single-Wire MIFARE Classic Smart Card Personalization

	Return Values from the Sample Code SCard Wrapper
	Application Responsibilities with Single-Wire Smart Card
	Installed Printer Status, Printer Options, and Supplies Status
	Printer Status
	Message Number
	Printer Connection Information

	Printer Options
	Sample Code—Printer Status
	Supplies Information
	Sample Code—Supplies Status
	Card Counts
	Get Card Counts
	Status XML File for Single Input Hopper Printer
	Status XML for Six-Position Input Hopper Printer
	Reset Card Counts

	Sample Code—Card Counts
	Locking
	Lock or Unlock the Printer
	Change the Lock/Unlock Password
	Password Rules
	Determine the Success of a Lock Request
	Sample Code—Locking

	Restart Printer
	Sample Code—Restart Printer

	Interactive Mode Best Practices

	Appendix A: Error Description Strings
	Appendix B: Print to a File with the XPS Card Printer Driver
	Appendix C: Using the Java SDK Sample Code with Eclipse
	Appendix D: Suppressing the Driver Message Display
	Enabling Driver Silent Mode
	Silent Mode Operation Notes

	Appendix E: References

